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PRELIMINAIRE

Dans notre précédent article paru dans les Annales du BTP
(Volume N° 2,2016), nous nous sommes intéressés a 1’analyse
au séisme d’un réservoir surélevé en béton armé et comme cas
pratique, nous avons traité un exemple de cuve reposant sur une
tour. Comme le support est un fit, le calcul du moment d’iner-
tie axial est tout simplement ramené a celui d’une section annu-
laire calculé par rapport a un axe passant par le centre de gra-
vité de la section du support.

En revanche, dans le cas d’un support en pilotis, composé de
plusieurs poteaux de forme rectangulaires disposés en forme
d’étoile, I’évaluation de ce moment d’inertie axial n’est pas
aussi évidente. C’est pour cette raison qu’un nouvel examen
de ce probleme nous a semblé répondre a une certaine néces-
sité pratique.

Nous développons, dans la contribution que nous soumettons
ici, une méthode de calcul des moments d’inertie du support
d’un réservoir surélevé, posé sur un contreventement en pilo-
tis. Cette méthode est qualifiée d’analytique et est inspirée des
relations de base de la résistance des matériaux ayant trait a
I’analyse des caractéristiques des sections planes. Pour le lec-
teur amateur des solutions graphiques, celui-ci trouvera dans
la seconde partie de I’article, une approche pour I’évaluation
des moments d’inertie axiaux par rapport aux axes du repere
global du support, inspirée du cercle des inerties, aussi appelé
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cercle de Mohr. Le lecteur trouvera méme un calcul pratique
qui illustre bien la méthode de calcul exposée.

Le travail que nous présentons dans cette contribution, a I’ins-
tar de nos précédents articles publiés dans les Annales du
BTP, s’inscrit clairement dans un environnement pratique de
la profession de I’ingénieur civil, par le fait qu’elle a un carac-
tere applicatif au stade de leur conception en bureau d’études.

CONTEXTE DE LETUDE

La demande sans cesse croissante des besoins en eau potable
des populations et besoins industriels atteste de 1’intérét que
représentent les ouvrages de stockage dans la mobilisation de la
ressource hydraulique. Cet intérét passe par la réalisation d’ou-
vrages de génie civil fiables et siirs, tout en évitant les fuites et
les gaspillages, particulierement dans les pays chauds comme
I’ Algérie. Du fait que nous réalisons de plus en plus d’ouvrages
de stockage de grande capacité pour les grands poles urbains,
il est devenu impératif de maitriser leur stabilité et leur com-
portement vis-a-vis du risque sismique. Or I’analyse des patho-
logies rencontrées, a la suite du dernier séisme dévastateur de
Boumerdes (2003), a montré un manque flagrant dans le com-
portement sismique des réservoirs surélevés mettant en évi-
dence I’importance de 1’analyse parasismique. Cette dernicre
analyse doit considérer la rigidité flexionnelle du support du
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réservoir surélevé qui passe inévitablement par 1’évaluation
exacte de son moment d’inertie.

C’est dans cet esprit que nous développons, dans la présente
contribution, une méthode de calcul du moment d’inertie d’un
support en pilotis. Deux solutions sont proposées, ’'une ana-
lytique inspirée des relations de base de la RDM, ’autre gra-
phique inspirée du cercle de Mohr. Cette contribution s’inscrit
clairement dans un environnement pratique de la profession
de I’ingénieur civil, par le fait qu’elle a un caractere applica-
tif au stade de la conception en bureau d’études des ouvrages
de stockage surélevés.

Nous avons choisi de publier cet article dans les Annales du
Batiment et des Travaux Publics pour 1’originalité de cette
approche, car nous sommes convaincus que cela enrichira le
contenu bibliographique de la revue. Les Annales du BTP ont
depuis une soixantaine d’années consacrées plusieurs articles
aux réservoirs, dont le premier remonte a 1959. 11 fiit publié
par Hangan et Soare et présenta un calcul rapide des réservoirs
cylindriques basé sur la théorie des plaques et coques. On n’ou-
bliera pas de mentionner le papier de Davidovici et Haddadi
(1981) qui reste probablement I’article des Annales du BTP le
plus utilisé jusqu’a nos jours par les ingénieurs de la pratique,
car il a largement répondu a la problématique de la réponse sis-
mique des réservoirs de stockage de liquides. Méme le Fascicule
74 renvoie les projeteurs a consulter cet article pour la justifi-
cation de la tenue au séisme des réservoirs sous 1’effet hydro-
dynamique. En 1996, la revue consacra méme un numéro spé-
cial coordonné par Mathieu dans le cadre de la mise a jour du
Fascicule 74, traitant de la pathologie et réparation des ouvrages
en béton de stockage et de transport des liquides. En 1995,
Layrangues présentera un calcul précis des réservoirs cylin-
driques tenant compte de I’interaction entre les différents élé-
ments résistants de I’ouvrage. Suivra en 2003, un autre article de
Mathieu consacré a la méthodologie d’évaluation des ouvrages
hydrauliques en béton appliquée a un patrimoine.

Quant au travail que nous présentons dans cette contribution, il
constitue la suite logique de nos précédents articles publiés dans
les Annales du BTP (2010, 2012, 2013,2015,2016), et donne
un apercu de notre activité de recherche. Cette derniere tend,
par les propositions trés pratiques qu’elle suggere, a répondre
aux préoccupations de notre monde contemporain, notamment
sur I’analyse de risque dans le domaine du génie civil.

1. INTRODUCTION

La cuve de stockage d’un réservoir surélevé est posée au som-
met d’un support pouvant &tre une tour ou un pilotis. Dans les
études d’ingénierie, I’ingénieur concepteur est toujours tenu
d’analyser le comportement de cet ouvrage face au séisme [4,6]
en considérant la rigidité flexionnelle (EI) de son systeme de
contreventement (le support). Cette analyse passe inévitable-
ment par 1’évaluation du moment d’inertie du support par rap-
port aux axes passant par son centre de gravité (repere global
OYZ sur la Figure 1).

Lorsque le support de la cuve est une tour ; le calcul du moment
d’inertie axial est tout simplement ramené a celui d’une section
annulaire (section transversale du fiit du support) par rapport a
un axe passant par le centre de gravité de la section du support.
Ce cas simple a déja été traité dans notre derniere contribution
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[5]. A I’'inverse, lorsque la cuve est posée sur un support en
pilotis, composé de plusieurs poteaux de forme rectangulaire
disposés en forme d’étoile (Figure 1), I’évaluation de la rigi-
dité flexionnelle n’est pas aussi évidente.

Traditionnellement, et a travers la majorité des études menées au
niveau des bureaux d>études techniques, les moments d’inertie
axiaux de chaque poteau, constituant le support, sont détermi-
nés en considérant dans un premier temps les moments d’iner-
tie axiaux par rapport aux axes passant par le centre de gravité
du dit poteau (Repere Gyz de la Figure 2). Dans un second
temps, une translation d’axes est nécessaire pour déduire les
moments d’inertie axiaux par rapport aux axes passant par le
centre de gravit€ de I’ouvrage (Repere Oy z, de la Figure 2).
Cependant la rotation d’axe du poteau d’un angle a pour déduire
les moments d’inertie axiaux par rapport aux axes du repere
global OYZ (Figure 2) est trés souvent négligée tant les calculs
qui en découlent sont longs et fastidieux lorsqu’ils ne sont pas
méconnus par les ingénieurs civils de bureaux d’études. Cette
maniere de faire conduit généralement a une surestimation de
la rigidité flexionnelle du support, et par voie de conséquence
a un manque de robustesse de la structure.

C’est pour cette raison qu’un nouvel examen de ce probleme
nous a semblé répondre a une certaine nécessité pratique.
Comme la plupart des problémes de I’ingénieur, 1’évaluation
des moments d’inertie du support d’un réservoir surélevé peut
étre abordée suivant deux points de vus différents.

La premiere approche est le calcul analytique. Certes, il appa-
raitra un peu suranné, étant donné que la notion de moment
d’inertie est intervenue pour la premieére fois d’une manicre
officielle et systématique au début du 19¢ siecle (1811) [3],
mais chemin faisant et en partant avec des notions simples,
nous verrons qu’elles pourront tre transportées a un probleme
plus neuf et d’actualité.

La seconde approche est la construction graphique qui est la
facon la plus simple de prendre le probleme en charge, a condi-
tion de connaitre le principe du tracé du cercle de Mohr qui
remonte aussi a la fin du 19¢ siecle (1880) [2]. En ce temps-la,
et méme jusqu’a un passé tous récent, avant I’avénement des
ordinateurs, ces méthodes graphiques élégantes et trés concretes
permettaient de mener a bien la résolution des problemes de
moment d’inertie en ingénierie.

La recherche d’une solution analytique a ce probléme, nous a
amené a présenter la contribution faisant 1’objet de la présente
étude. Avec une approche, s’appuyant sur les notions de base
des caractéristiques géométriques des sections planes, nous arri-
vons a tirer les relations qui permettent d’évaluer les moments
d’inertie axiaux par rapport aux axes du repere global, que nous
présentons plus loin en section 3. Et pour parer a une certaine
lourdeur des calculs analytiques, une solution graphique plus
rapide est imaginée sur le cercle des inerties (ou de Mohr). Le
principe général de cette approche réside dans la transposition
du procédé analytique, traditionnellement utilisé. Cette méthode
nous permet d’aboutir d’'une maniere satisfaisante et relative-
ment simple & une solution générale du probleme, qui a pre-
miere vue parait des plus compliqué.

Bien qu’un nombre important d’études ait été menés sur les
réservoirs, a notre connaissance, aucune ne traite de 1’évalua-
tion des moments d’inertie principaux d’un support en pilotis
d’un réservoir surélevé, d’une manieére explicite, comme nous
le faisons dans cette contribution.
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Figure 1 : Coupe transversale d’un support en pilotis d’un réservoir surélevé dans son repére global OYZ

2. POSITION DU PROBLEME

Considérons un réservoir surélevé posé sur un support en pilo-
tis composé de n poteaux (n=4, 6, 8, 10, 12 ...) tous disposés
en étoile autour d’un cercle de rayon R, comme présenté dans
la Figure 1. Nous cherchons a déterminer le moment d’inertie
du systéme de contreventement en pilotis par rapport aux axes
OY et OZ du repere global de la structure. Les poteaux pré-
sentent les mémes caractéristiques géométriques sur toute la
hauteur développée du support, c’est-a-dire que le support est
a inertie constante. La dimension d’un poteau rectangulaire est
b en largeur et h en longueur.

3. METHODE DE RESOLUTION
ANALYTIQUE

3.1. Moments d’inertie axiaux I, I' d’un
poteau par rapport aux axes Gz et Gy

Figure 2 : Représentation d’un poteau d’ordre (i)
dans les différents repéres

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port a 1I’axe Gz passant par son centre de gravité est donné par :
P:bw

] (1)
12
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Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port a I’axe Gy passant par son centre de gravité est donné par :
[ _hb’
Y12
Le produit d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port aux axes Gz et Gy passant par son centre de gravité est nul :

2

I,=0 3)

3.2. Moment d’inertie I, I' | d’un poteau
par rapport aux axes Oz, Oy,

Les axes (Oz, et Oy ) se déduisent des axes (Gzet Gy) par une
translation (Figure 2). Les moments d’inertie axiaux (I' et
I' ) ainsi que produit d’inertie I'  sont évalués par le théo-
yl ylzl

reme de Huygens.

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par
rapport a I’axe Oz, passant par le centre du repere global O de
la structure est donné par :

I, = +R’.(b.h) “4)

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par
rapport a I’axe Oy, passant par le centre du repere global O de
la structure est donné par :

L, =T, )

Le produit d’inertie d’un poteau rectangulaire d’ordre (i) par
rapport aux axes Oz, et Oy, passant par le centre du repere glo-
bal O de la structure est donné par :

Ii

ylzl

=1\, =0 6)

3.3. Moments d’inertie axiaux I', et I, d'un
poteau par rapport aux axes OZ et OY

Les axes (OZ et OY) se déduisent des axes (Oz, et Oy, ) par une
rotation d’angle o de I’axe Oz, par rapport a I’axe OZ (Figure 3).
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Figure 3 : Déduction des axes (OZ et OY)
par la rotation des axes (Oz, et Oy,) d’un angle o,

Le moment d’inertie I', d’un poteau d’ordre (i) par rapport a
I’axe OZ est donné par 1’expression suivante [7] :

A
D’apres la Figure 3, nous pouvons déduire que :
AC=0A.cos(a,)=y,.cos(a;) ®)
AF=0B.sin(o, )=z,.sin(a,, ) 9)
Nous pouvons alors écrire que :
Y=0D=AC-AF=y,.cos(,)-z,.sin(¢,) (10)
Il vient :
I, = [[y,.cos(e)-z,.sin(e,)] .dA (11)
A
i 2 . 2
I, = J.[yl.cos(a,.)] .dA+J.[zl.s1n(a,.)] (12)
A A
dA=2.[y,z,.cos(e;,).sin(a,).dA
A
I, =1, .cos’ (o, )+1,,.sin’ (o, )-2.I,,,, .cos(a, ).sin(c, ) (13)

Etant donné que :

1+cos(2a.

cosz(ai)=# (14)
2

. 2, l-cos(2a,)
sin (ai)—f (15)
sin(2a;, )=2.cos(a, ).sin(c, ) (16)

Nous obtenons en définitif :
L I‘ -1,

I = 212 o L cos(2a,)- Iy121 sin(2a,,) (17)
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Le moment d’inertie I', d’un poteau d’ordre (i) par rapport a
I’axe OY est donné par I’expression suivante [7] :

IiY=J.ZZ.dA (18)
A
D’apres la Figure 3, nous pouvons déduire que :

OC=0A_sin(a, )=y, .sin(a,) (19)

CE=OB.cos(a, )=z,.cos(a;) (20)

Nous pouvons alors écrire que :

Z=0OE=OC+CE=y,.sin(q; )tz,.cos(,) (21)

11 vient :

1= [, sin(, )2, cos(ar) | .dA 22)
A

= J.[YI'Sin(ai)]z dA +_|.[z1.cos(ozi)]2

A

(23)
dA + Z.J. y,.z,-cos(e,).sin(¢er,).dA
A

I, =T .sin’(o, )+Iiyl .cos”(a, )+2.Iiy1Z1 .cos(a, ).sin(a;) (24)

Nous obtenons en définitif :

L+L, I,-L, |
I, = 5 1 . L cos(2a, )+Iylzl sinQa,) (25)
Le produit d’inertie I', d’un poteau d’ordre (i) par rapport aux

axes OY et OZ est donné par I’expression suivante [7] :

I, = J'Y.Z.dA (26)
A
Il vient :
I;Z:J[yl.cos(ai)—zl.sin((xi)].[yl.sin(ai)+z1.cos((xi)].dA (27)

’ IiYZ=(IiZ1-Ii ).cos((x,).sin((xi).

(28)
+IZlyl (cos (a,)-sin’ (o, ))
Nous obtenons en définitif :
1i L
I,==2 5 L sin(20, )+1,,,-cos(2a,) (29)

Un examen attentif des équations (17, 25 et 29) révele que celles-
ci sont des équations paramétriques qui varient en fonction de
I’angle a.. Nous pouvons alors correspondre a toute valeur de
o, une valeurde I' ,de I' etde I',

3.4. Moments d’inertie axiaux I, et |, du
support par rapport aux axes OZ et OY

Le moment d’inertie du systéme de contreventement en pilo-
tis par rapport a I’axe OZ est donné par la relation suivante :

Il Il Il Ii
I—ZI' Z[ 5 ZY‘ .cos(2a, )T, sin(2a, )} (30)

i=1
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Le moment d’inertie du systéme de contreventement en pilo-
tis par rapport a I’axe OY est donné par la relation suivante :

R I A (I L |
IY=;I’Y = 2_1:{12“_12 .cos(2a; )+Iylzl s1n(2al.)} (31)

Le produit d’inertie du systeme de contreventement en pilotis par
rapport aux axes OZ et OY est donné par la relation suivante :

LI,
I, ZI Z{ 5 L sin(2a, )+L,,-co8(20; )} (32)

i=l1

4. METHODE DE RESOLUTION
GRAPHIQUE

L’équation (17) peut se mettre sous la forme :

. . 2 . . 2
L, +1L L, -1 .
l:I‘Z -z yl} :{ 2l 5 L .cos(2al.)—I‘ylzl.sin(Zal.)} (33)

2

L’équation (29) peut se mettre sous la forme :
2

sinQ2a;)+1,,, cosQa;) | (34

(1, -0] = =5

En additionnant les relations (33) et (34) il vient :

i i ? i
-Z_Izﬂzrlyl J{Ii 0] _| Li- [Iym]z (35)

Il

ette derniere équation nous rappelle I’équation d’un cercle
(Figure 4) de rayon R dont le centre C a pour coordonnées (X,
Y,) qui s’écrit sous la forme :

[Y-Y, | +[X-X,] =R (36)

Figure 4. Représentation d’un cercle de centre C (X, Y)
et de rayon R

Par analogie avec 1’équation (36), nous déduisons que 1’équa-
tion (35) représente 1’équation d’un cercle des inerties que
nous pouvons représenter sur un repere orthogonal (O, OI ).
Le centre du cercle des inerties, que nous noterons C, aura pour
coordonnées[l‘Z s Ily | J, c’est-a-dire qu’il sera centré en

b

2

un point C sur I’axe OI, et son rayon sera égal a
. . 2
Ilzl _I]yl i 2
R= T + [Iylzl ]
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Etant donné que chaque poteau d’ordre (i) du systéme de contre-
ventement en pilotis peut étre repéré par un angle o, dans le
repere global du support OYZ (voir Figure 2), ses moments
inertie peuvent &tre déduits directement a partir du cercle des
inerties, d’une maniere simple et rapide, en suivant une procé-
dure de construction graphique, que nous développeront dans
la section (4.2).

4.1. Détermination de la valeur de o,
pour laquelle I, prend des valeurs
extrémes (1™ et )

Nous savons que le moment d’inertie axial I', (ou I') passera
par un extremum pour toute valeur de o, annulant sa dérivée
premiere. Nous pouvons alors écrire :

dI
da

Nous concluons que I', et I, prennent des valeurs extrémes
lorsque le produit d’inertie I, est nul.

(I' iyl).Sin(ZOLi)-2Iiylzl.cos(2ai)=-2[IiYZJZO (37)

i i

R O
I,= 112 - sin(2o,)+1,,,,.cos(20,)=0 (38)
1l vient alors : ‘
211 1z1
tg(20;)=- ] yI, =0 (39)

Nous déduisons qus&T I', prend des valeurs extrémes pour toute
valeur de o, =0+k.— ou k est un entier naturel.
2

Cherchons a déterminer la valeur de I',, pour la valeur parti-
culiere de k=0, donnant a,, =0, correspondant a I’inertie axiale
du poteau N° 4 (Figure 1).
| AR N WS
4zl yl z1
I =——+

5 2 cos(2a, )2, sin(2a, )= =17 (40)

Cherchons a déterminer la valeur de I',, pour la valeur particu-
liere de k=1, donnant ., =—, correspondant a I’inertie axiale
du poteau N° 1 (Figure 1).

1 Ilzl+I1 Ilzl Iyl 1 min
IZ_T 2 .cos(2a, )- Iylzl sin2a, =L, =" (41)

Nous concluons que le cercle des inerties passera par une valeur
maximale (I5**=I} ) correspondant au moment d’inertie du
poteau 4 (Flgure 2) ainsi que par une valeur minimale ( Imm =1,)
correspondant au moment d’inertie du poteau 1.

4.2. Procédure de construction du cercle
des inerties des poteaux du support
en pilotis

La représentation géométrique des moments d’inertie, donnée

dans la Figure 5, par la méthode graphique du cercle de Mohr

se fait en plusieurs étapes qui peuvent se résumer comme suit :

e Tracer les axes orthogonaux OI, et Ol ,

* Evaluer analytiquement les moments d’inertie axiaux (I' ,
I'y ) et produit d’inertie Ilylzl du poteau 1 correspondant a
I’angle (a, =90°).

e Parla relatlon (41), déduire que I1 —I1 —Imm et I;Z =0.
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* Localiser le point P , représentatif du poteau 1, de coordonnées
(I',, 0) sur I’axe OI,, des abscisses. Lo
 Localiser le point C de coordonnées | —2L YL , 0

désignant le centre du cercle des inerties sur I’axe O, des
abscisses.
* Tracer le cercle de Mohr de centre C, de rayon
3 et passant par le point P,.

R= Ilzljlyl +|:Ilylzl:|2

* A partir de cette étape, nous pouvons déduire les moments
d’inertie axiaux de n’importe quel poteau du support de
contreventement noté P, d’ordre (i) dont I’axe Oz, forme
un angle a. avec ’axe OZ. Lorsque I’axe Oz, du poteau
d’ordre (i) fait un angle o, avec I’axe OZ dans la réalité, il
parcourt le double (soit donc 2a.,) sur le cercle des inerties.

Figure 5. Construction du cercle des inerties

5. APPLICATION PRATIQUE

Comme application pratique, et pour illustrer la méthode de
calcul exposée en section 3, nous analysons un chéteau d’eau
de capacité 1000 m® posé sur un support en pilotis (Figure 6),
implanté dans la ville d’El Meneaa (Ghardaia, Algérie) [1].
Les caractéristiques géométriques du réservoir sont résumées
dans le tableau 1.

5.1. Calcul analytique

Les moments d’inertie axiaux (I', et Iiy) de chaque poteau rectan-
gulaire P_d’ordre (i), repéré par son angle o (ou ) (Figure 2),
sont donnés par les relations (1 a 3). Les moments d’inertie
axiaux (I, et Iiyl) de chaque poteau rectangulaire P, sont don-
nés par les relations (4 a 5). Enfin les moments d’inertie axiaux
(I',, ') et le produit d’inertie I' , de chaque poteau rectangu-
laire P, sont donnés par les relations (17,24 et 29). Nous avons
consigné tous les résultats du calcul analytique effectué pour
chaque poteau du support en pilotis en fonction de son angle
o, (ou B) dans le tableau 2 qui suit.

Nous constatons que le produit d’inertie du systéme de contre-
ventement I, est nul. Nous déduisons que les axes OZ et OY du
repere global de la structure sont des axes centraux principaux
du systeme. Etant donné que les moments d’inertie atteignent
les valeurs extrémes (I =I . =I =1 ),le moment d’inertie axial
du contreventement par rapport a n’importe quel axe passant
par le centre O du repére global vautI__ . Cette orientation judi-
cieuse des poteaux rectangulaires en forme d’étoile (Figure 6)
procure au support un comportement équivalent a un support
circulaire en forme d’anneau dont le moment d’inertie est le
méme dans tous les sens.

Un ingénieur civil qui négligerait ou omettrait les inclinaisons
que font les poteaux du pilotis avec les axes OY et OZ du repere

Tableau 1 : Caractéristiques géométriques du réservoir surélevé.

Volume réel du réservoir

1000,00 m?

Nombre de poteaux

12

Dimensions des poteaux

0,70x0,90 | m?

en pilofis

Rayon de |'axe moyen du support 5,10 m

Figure 6. Coupe longitudinale du réservoir d’El Meneaa avec la coupe transversale de son support en pilotis [1].
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Tableau 2 : Résultats récapitulatifs du calcul analytique des moments d’inertie.

N° du Angle Angole I‘y I, I‘zx I‘Y1 I, Iizw I, I, I,
poteau | B(°) o (%) [m?] [m%] [m*] [m*] [m*] [m*] [m*] [m*] [m*]
1 00 90 0,03 0,04 0,00 0,03 16,43 0,00 16,43 0,03 - 0,00
2 30 60 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 -7,10
3 60 30 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 -7,10

4 90 00 0,03 0,04 0,00 0,03 16,43 0,00 0,03 16,43 0,00

5 120 - 30 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 7,10

6 150 - 60 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 7,10

7 180 - 90 0,03 0,04 0,00 0,03 16,43 0,00 16,43 0,03 0,00
8 210 -120 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 -7,10
9 240 - 150 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 -7,10
10 270 - 180 0,03 0,04 0,00 0,03 16,43 0,00 0,03 16,43 0,00
11 300 -210 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 7,10
12 330 - 240 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 7,10
Somme 197,15 98,73 98,73 0,00

global I’amenerait a considérer que le moment d’inertie du sup-
port I, par rapport a I’axe OZ, est la somme des moments d’iner-
tie Iim qui d’apres le tableau 2, vaudrait 197.15 m* au lieu de
98.73 m*. Le simplg bon sens, incite a dire que la somme des

moments d’inertie ', =197.15 m*, en soit n’a aucun sens phy-

sique. Cette confusion fortuite mais bien regrettable entre ces
deux résultats qui présentent une grande analogie dans I’esprit
des ingénieurs, peu expérimentés et moins aguerris aux calculs
des rigidités (ou/et des moments d’inertie), nous conduira a
surestimer la rigidité flexionnelle (EI) du support en pilotis.
Cette surestimation de la rigidité du support aura pour consé-
quence de destiner I’ouvrage en question a des sollicitations sis-
miques d’une plus grande intensité pour les quelles il ne pourra
pas résister dans la réalité étant donné que sa vraie rigidité est
en-deca de la rigidité supposée par I’'ingénieur calculateur.

5.2. Construction graphique

La construction du cercle des inerties des poteaux du support en
pilotis de notre application pratique est donnée dans la Figure 7,
en suivant les étapes déja énumérées en section (4.2).

* Les moments d’inertie axiaux ainsi que le produit d’inertie
du poteau 1 correspondant a I’angle (o, =90°), obtenus
analytiquement sont : I' =16.43 m*, I‘y]=0.03 m*et I‘ym=0.

* Nous localisons le point P, représentatif du poteau 1, de
coordonnées (I‘yl=0.03 m* ; Ilym=0 m*) sur I’axe OI, des
abscisses.

¢ Nous localisons le point C de coordonnées (16.46 m*, 0),
désignant le centre du cercle des inerties sur I’axe OI, des
abscisses.

e Nous tragons le cercle de Mohr de centre C, de rayon
R=8.20 m* et passant par le point P,.

L’axe Oz, du poteau 2 forme un angle de 30° par rapport a
celui du poteau 1 dans la réalité (Figure 6). Le point P, devra
parcourir le double (soit donc 60°) sur le cercle des iner-
ties par rapport au point P . L’axe Oz, du poteau 3 forme un
angle de 60° par rapport a celui du poteau 1 dans la réalité
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(Figure 6). Le point P, devra parcourir le double (soit donc
120°) sur le cercle des inerties par rapport au point P, . Avec
la méme démarche, nous pouvons placer sur le cercle des
inerties les points représentatifs (P, P, ... et P )) correspon-
dant aux poteaux (4,5 ... et 12).

Il est aisé de déduire que deux poteaux, dont les axes Oz,
forment un angle droit dans la réalité, sont diamétralement
opposés sur le cercle de Mohr tels que les points P et P, ou
les points P, et P_ ou encore les points P, et P..

Deux poteaux, dont les axes Oz, forment un angle plat
(opposés) dans la réalité, sont confondus sur le cercle de
Mohr tels que les points (P-P,P-P,P-P,P-P  P-P,
etenfin P-P ).

10°

Nous nous rendons compte qu’a partir du seul poteau 1, nous
pouvons aisément déduire tous les moments d’inertie (et pro-
duit d’inertie) des poteaux du support d’un réservoir surélevé
par de simples rotations sur le cercle des inerties en fonction
des inclinaisons des poteaux entre eux dans la réalité, en exploi-
tant leur symétrie.

Figure 7. Construction du cercle des inerties des poteaux
du support en pilotis du réservoir d’El Meneaa
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6. CONCLUSION

Nous venons d’illustrer a travers cette contribution que le calcul
des moments d’inertie (et produit d’inertie) des poteaux du sup-
port d’un réservoir sur pilotis peut étre résolu analytiquement ou
graphiquement. Avec un exemple pratique, nous sommes arri-
vés a mettre en évidence que 1’approche analytique proposée
présente des équations pas trop complexes et donne lieu a des
résolutions simples. La démarche de résolution proposée n’est
pas complexe d’utilisation, et s’accommode aisément d’une pro-
grammation avec Matlab ou simplement sur un classeur Excel.
Quant aux lecteurs amateurs de solutions graphiques, ils auront
trouvé une procédure élégante de la déduction des moments
d’inertie de chaque poteau par rapport a I’axe O,,, a partir du
cercle de Mohr par la seule connaissance des moments d’inertie
axiaux (I' et Ilyl) du poteau P|. Cette construction graphique
du cercle des inerties résulte de I’adaptation de la méthode de
I’évaluation des caractéristiques des sections planes.

A travers ’exemple pratique que nous avons traité, nous avons
pu démontré que I’omission de la prise en compte de la rotation
des axes principaux de chaque poteau constituant le pilotis par
rapport a 1’axe horizontal OZ du repére global de la structure
peut altérer d’une maniére significative la précision des calculs
qui peuvent en découler, en terme d’évaluation de la force sis-
mique et de réponse sismique de la structure. Il va sans dire
que les conclusions et interprétations qui seront déduites de ces
résultats seront tres €loignées de la réalité.
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