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PRÉLIMINAIRE

Dans notre précédent article paru dans les Annales du BTP 
(Volume N° 2, 2016), nous nous sommes intéressés à l’analyse 
au séisme d’un réservoir surélevé en béton armé et comme cas 
pratique, nous avons traité un exemple de cuve reposant sur une 
tour. Comme le support est un fût, le calcul du moment d’iner-
tie axial est tout simplement ramené à celui d’une section annu-
laire calculé par rapport à un axe passant par le centre de gra-
vité de la section du support.
En revanche, dans le cas d’un support en pilotis, composé de 
plusieurs poteaux de forme rectangulaires disposés en forme 
d’étoile, l’évaluation de ce moment d’inertie axial n’est pas 
aussi évidente. C’est pour cette raison qu’un nouvel examen 
de ce problème nous a semblé répondre à une certaine néces-
sité pratique.
Nous développons, dans la contribution que nous soumettons 
ici, une méthode de calcul des moments d’inertie du support 
d’un réservoir surélevé, posé sur un contreventement en pilo-
tis. Cette méthode est qualifiée d’analytique et est inspirée des 
relations de base de la résistance des matériaux ayant trait à 
l’analyse des caractéristiques des sections planes. Pour le lec-
teur amateur des solutions graphiques, celui-ci trouvera dans 
la seconde partie de l’article, une approche pour l’évaluation 
des moments d’inertie axiaux par rapport aux axes du repère 
global du support, inspirée du cercle des inerties, aussi appelé 

cercle de Mohr. Le lecteur trouvera même un calcul pratique 
qui illustre bien la méthode de calcul exposée.
Le travail que nous présentons dans cette contribution, à l’ins-
tar de nos précédents articles publiés dans les Annales du 
BTP, s’inscrit clairement dans un environnement pratique de 
la profession de l’ingénieur civil, par le fait qu’elle a un carac-
tère applicatif au stade de leur conception en bureau d’études.

CONTEXTE DE L’ÉTUDE

La demande sans cesse croissante des besoins en eau potable 
des populations et besoins industriels atteste de l’intérêt que 
représentent les ouvrages de stockage dans la mobilisation de la 
ressource hydraulique. Cet intérêt passe par la réalisation d’ou-
vrages de génie civil fiables et sûrs, tout en évitant les fuites et 
les gaspillages, particulièrement dans les pays chauds comme 
l’Algérie. Du fait que nous réalisons de plus en plus d’ouvrages 
de stockage de grande capacité pour les grands pôles urbains, 
il est devenu impératif de maitriser leur stabilité et leur com-
portement vis-à-vis du risque sismique. Or l’analyse des patho-
logies rencontrées, à la suite du dernier séisme dévastateur de 
Boumerdes (2003), a montré un manque flagrant dans le com-
portement sismique des réservoirs surélevés mettant en évi-
dence l’importance de l’analyse parasismique. Cette dernière 
analyse doit considérer la rigidité flexionnelle du support du 



VOL. 70, N° 4	 39

réservoir surélevé qui passe inévitablement par l’évaluation 
exacte de son moment d’inertie. 
C’est dans cet esprit que nous développons, dans la présente 
contribution, une méthode de calcul du moment d’inertie d’un 
support en pilotis. Deux solutions sont proposées, l’une ana-
lytique inspirée des relations de base de la RDM, l’autre gra-
phique inspirée du cercle de Mohr. Cette contribution s’inscrit 
clairement dans un environnement pratique de la profession 
de l’ingénieur civil, par le fait qu’elle a un caractère applica-
tif au stade de la conception en bureau d’études des ouvrages 
de stockage surélevés. 
Nous avons choisi de publier cet article dans les Annales du 
Bâtiment et des Travaux Publics pour l’originalité de cette 
approche, car nous sommes convaincus que cela enrichira le 
contenu bibliographique de la revue. Les Annales du BTP ont 
depuis une soixantaine d’années consacrées plusieurs articles 
aux réservoirs, dont le premier remonte à 1959. Il fût publié 
par Hangan et Soare et présenta un calcul rapide des réservoirs 
cylindriques basé sur la théorie des plaques et coques. On n’ou-
bliera pas de mentionner le papier de Davidovici et Haddadi 
(1981) qui reste probablement l’article des Annales du BTP le 
plus utilisé jusqu’à nos jours par les ingénieurs de la pratique, 
car il a largement répondu à la problématique de la réponse sis-
mique des réservoirs de stockage de liquides. Même le Fascicule 
74 renvoie les projeteurs à consulter cet article pour la justifi-
cation de la tenue au séisme des réservoirs sous l’effet hydro-
dynamique. En 1996, la revue consacra même un numéro spé-
cial coordonné par Mathieu dans le cadre de la mise à jour du 
Fascicule 74, traitant de la pathologie et réparation des ouvrages 
en béton de stockage et de transport des liquides. En 1995, 
Layrangues présentera un calcul précis des réservoirs cylin-
driques tenant compte de l’interaction entre les différents élé-
ments résistants de l’ouvrage. Suivra en 2003, un autre article de 
Mathieu consacré à la méthodologie d’évaluation des ouvrages 
hydrauliques en béton appliquée à un patrimoine. 
Quant au travail que nous présentons dans cette contribution, il 
constitue la suite logique de nos précédents articles publiés dans 
les Annales du BTP (2010, 2012, 2013, 2015, 2016), et donne 
un aperçu de notre activité de recherche. Cette dernière tend, 
par les propositions très pratiques qu’elle suggère, à répondre 
aux préoccupations de notre monde contemporain, notamment 
sur l’analyse de risque dans le domaine du génie civil. 

1. INTRODUCTION

La cuve de stockage d’un réservoir surélevé est posée au som-
met d’un support pouvant être une tour ou un pilotis. Dans les 
études d’ingénierie, l’ingénieur concepteur est toujours tenu 
d’analyser le comportement de cet ouvrage face au séisme [4,6] 
en considérant la rigidité flexionnelle (EI) de son système de 
contreventement (le support). Cette analyse passe inévitable-
ment par l’évaluation du moment d’inertie du support par rap-
port aux axes passant par son centre de gravité (repère global 
OYZ sur la Figure 1).
Lorsque le support de la cuve est une tour ; le calcul du moment 
d’inertie axial est tout simplement ramené à celui d’une section 
annulaire (section transversale du fût du support) par rapport à 
un axe passant par le centre de gravité de la section du support. 
Ce cas simple a déjà été traité dans notre dernière contribution 

[5]. A l’inverse, lorsque la cuve est posée sur un support en 
pilotis, composé de plusieurs poteaux de forme rectangulaire 
disposés en forme d’étoile (Figure 1), l’évaluation de la rigi-
dité flexionnelle n’est pas aussi évidente.
Traditionnellement, et à travers la majorité des études menées au 
niveau des bureaux d›études techniques, les moments d’inertie 
axiaux de chaque poteau, constituant le support, sont détermi-
nés en considérant dans un premier temps les moments d’iner-
tie axiaux par rapport aux axes passant par le centre de gravité 
du dit poteau (Repère Gyz de la Figure 2). Dans un second 
temps, une translation d’axes est nécessaire pour déduire les 
moments d’inertie axiaux par rapport aux axes passant par le 
centre de gravité de l’ouvrage (Repère Oy1z1 de la Figure 2). 
Cependant la rotation d’axe du poteau d’un angle α pour déduire 
les moments d’inertie axiaux par rapport aux axes du repère 
global OYZ (Figure 2) est très souvent négligée tant les calculs 
qui en découlent sont longs et fastidieux lorsqu’ils ne sont pas 
méconnus par les ingénieurs civils de bureaux d’études. Cette 
manière de faire conduit généralement à une surestimation de 
la rigidité flexionnelle du support, et par voie de conséquence 
à un manque de robustesse de la structure. 
C’est pour cette raison qu’un nouvel examen de ce problème 
nous a semblé répondre à une certaine nécessité pratique. 
Comme la plupart des problèmes de l’ingénieur, l’évaluation 
des moments d’inertie du support d’un réservoir surélevé peut 
être abordée suivant deux points de vus différents.
La première approche est le calcul analytique. Certes, il appa-
raitra un peu suranné, étant donné que la notion de moment 
d’inertie est intervenue pour la première fois d’une manière 
officielle et systématique au début du 19e siècle (1811) [3], 
mais chemin faisant et en partant avec des notions simples, 
nous verrons qu’elles pourront être transportées à un problème 
plus neuf et d’actualité.
La seconde approche est la construction graphique qui est la 
façon la plus simple de prendre le problème en charge, à condi-
tion de connaitre le principe du tracé du cercle de Mohr qui 
remonte aussi à la fin du 19 e siècle (1880) [2]. En ce temps-là, 
et même jusqu’à un passé tous récent, avant l’avènement des 
ordinateurs, ces méthodes graphiques élégantes et très concrètes 
permettaient de mener à bien la résolution des problèmes de 
moment d’inertie en ingénierie.
La recherche d’une solution analytique à ce problème, nous a 
amené à présenter la contribution faisant l’objet de la présente 
étude. Avec une approche, s’appuyant sur les notions de base 
des caractéristiques géométriques des sections planes, nous arri-
vons à tirer les relations qui permettent d’évaluer les moments 
d’inertie axiaux par rapport aux axes du repère global, que nous 
présentons plus loin en section 3. Et pour parer à une certaine 
lourdeur des calculs analytiques, une solution graphique plus 
rapide est imaginée sur le cercle des inerties (ou de Mohr). Le 
principe général de cette approche réside dans la transposition 
du procédé analytique, traditionnellement utilisé. Cette méthode 
nous permet d’aboutir d’une manière satisfaisante et relative-
ment simple à une solution générale du problème, qui à pre-
mière vue parait des plus compliqué. 
Bien qu’un nombre important d’études ait été menés sur les 
réservoirs, à notre connaissance, aucune ne traite de l’évalua-
tion des moments d’inertie principaux d’un support en pilotis 
d’un réservoir surélevé, d’une manière explicite, comme nous 
le faisons dans cette contribution.



40	 ANNALES DU BÂTIMENT ET DES TRAVAUX PUBLICS

2. POSITION DU PROBLÈME

Considérons un réservoir surélevé posé sur un support en pilo-
tis composé de n poteaux (n=4, 6, 8, 10, 12 …) tous disposés 
en étoile autour d’un cercle de rayon R, comme présenté dans 
la Figure 1. Nous cherchons à déterminer le moment d’inertie 
du système de contreventement en pilotis par rapport aux axes 
OY et OZ du repère global de la structure. Les poteaux pré-
sentent les mêmes caractéristiques géométriques sur toute la 
hauteur développée du support, c’est-à-dire que le support est 
à inertie constante. La dimension d’un poteau rectangulaire est 
b en largeur et h en longueur.

3. MÉTHODE DE RÉSOLUTION 
ANALYTIQUE

3.1.  Moments d’inertie axiaux Ii
z, I

i
y d’un 

poteau par rapport aux axes Gz et Gy 

Figure 2 : Représentation d’un poteau d’ordre (i)  
dans les différents repères

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port à l’axe Gz passant par son centre de gravité est donné par : 

	
3

i
z

b.hI =
12

 � (1)

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port à l’axe Gy passant par son centre de gravité est donné par : 

	
3

i
y

h.bI =
12

�  (2)

Le produit d’inertie d’un poteau rectangulaire d’ordre (i) par rap-
port aux axes Gz et Gy passant par son centre de gravité est nul :

	  i
yzI =0  � (3)

3.2.  Moment d’inertie Ii
z1, I

i
y1 d’un poteau 

par rapport aux axes Oz1, Oy1

Les axes (Oz1 et Oy1) se déduisent des axes (Gz et Gy) par une 
translation (Figure 2). Les moments d’inertie axiaux (Ii

z1 et 
Ii

y1) ainsi que produit d’inertie Ii
y1z1 sont évalués par le théo-

rème de Huygens.
Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par 
rapport à l’axe Oz1 passant par le centre du repère global O de 
la structure est donné par : 

	 i i 2
z1 zI =I +R .(b.h)  � (4)

Le moment d’inertie d’un poteau rectangulaire d’ordre (i) par 
rapport à l’axe Oy1 passant par le centre du repère global O de 
la structure est donné par : 

	
i i
y1I =I y  � (5)

Le produit d’inertie d’un poteau rectangulaire d’ordre (i) par 
rapport aux axes Oz1 et Oy1 passant par le centre du repère glo-
bal O de la structure est donné par :

	 i i
y1z1 yzI =I 0= �  (6)

3.3.  	Moments d’inertie axiaux Ii
Z et Ii

Y d’un 
poteau par rapport aux axes OZ et OY

Les axes (OZ et OY) se déduisent des axes (Oz1 et Oy1) par une 
rotation d’angle αi de l’axe Oz1 par rapport à l’axe OZ (Figure 3). 

Figure 1 : Coupe transversale d’un support en pilotis d’un réservoir surélevé dans son repère global OYZ
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Figure 3 : Déduction des axes (OZ et OY)  
par la rotation des axes (Oz1 et Oy1) d’un angle αi

Le moment d’inertie Ii
Z d’un poteau d’ordre (i) par rapport à 

l’axe OZ est donné par l’expression suivante [7] :

	
i 2
Z

A

I = Y .dA∫ � (7)

D’après la Figure 3, nous pouvons déduire que : 

	
i 1 iAC=OA.cos( )=y .cos( )  � (8)

	 i 1 iAF=OB.sin( )=z .sin( )  � (9)

Nous pouvons alors écrire que :

	 1 1Y=OD=AC-AF=y .cos( )-z .sin( )i i  � (10)

Il vient :

	 [ ]2i
Z 1 1I y .cos( )-z .sin( ) .dAi i

A

=  � (11)

	 [ ]2i
1Z

A
i � (12)

i i 2 i 2 i
Z z1 i y1 i y1z1 i iI =I .cos ( )+I .sin ( )-2.I .cos( ).sin( )� (13)

Etant donné que : 

	 2 i
i

1+cos(2 )cos ( )=
2

 � (14)

	
2 i

i
1-cos(2 )sin ( )=

2  � (15)

	 i i isin(2 )=2.cos( ).sin( )  � (16) 

Nous obtenons en définitif :

	
i i i i
z1 y1 z1 y1 ii

i1z1yiZ

I +I I -I
I = + .cos(2 )-I .sin(2 )

2 2
� (17) 

Le moment d’inertie Ii
Y d’un poteau d’ordre (i) par rapport à 

l’axe OY est donné par l’expression suivante [7] :

	
i 2
Y

A

I = Z .dA∫  � (18) 

D’après la Figure 3, nous pouvons déduire que : 

	 i 1 iOC=OA.sin( )=y .sin( ) � (19)

	 i 1 iCE=OB.cos( )=z .cos( ) � (20)

Nous pouvons alors écrire que :

	 1 1Z=OE=OC+CE=y .sin( )+z .cos( )i i  � (21)

Il vient :

	 [ ]2i
Y 1 i 1 i

A

I = y .sin( )+z .cos( ) .dA � (22)

	 [ ] [ ]22i
11Y

AA
ii �  (23)

	 i i 2 i 2 i
Y z1 i y1 i y1z1 i iI =I .sin ( )+I .cos ( )+2.I .cos( ).sin( )� (24)

Nous obtenons en définitif :

	
i i i i
z1 y1 z1 y1 ii

1z1yY

I I I I
I .cos(2 )+I .sin(2 )

2 2 i i

+
=  � (25)

Le produit d’inertie Ii
YZ d’un poteau d’ordre (i) par rapport aux 

axes OY et OZ est donné par l’expression suivante [7] :

	 i
YZI Y.Z.dA

A

= ∫  � (26)

Il vient :

[ ] [ ]i
YZ 1 i 1 i 1 i 1 i

A

I = y .cos( )-z .sin( ) . y .sin( )+z .cos( ) .dA �(27)

	 � (28)

Nous obtenons en définitif :

	
i i
z1 y1 ii

i1y1ziZY

I -I
I = .sin(2 )+I .cos(2 )

2
� (29)

Un examen attentif des équations (17, 25 et 29) révèle que celles-
ci sont des équations paramétriques qui varient en fonction de 
l’angle αi. Nous pouvons alors correspondre à toute valeur de 
αi, une valeur de Ii

Z, de Ii
Y et de Ii

YZ
.

3.4.  Moments d’inertie axiaux IZ et IY du 
support par rapport aux axes OZ et OY

Le moment d’inertie du système de contreventement en pilo-
tis par rapport à l’axe OZ est donné par la relation suivante :

i i i in
z1 y1 z1 y1 ii

i1z1yiZZ
i=1 1

I +I I -I
I = I + .cos(2 )-I .sin(2 )

2 2

n

i=
=  �(30)
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Le moment d’inertie du système de contreventement en pilo-
tis par rapport à l’axe OY est donné par la relation suivante :

i i i in
z1 y1 z1 y1 ii

1z1yiYY
i=1 1

I I I I
I = I .cos(2 )+I .sin(2 )

2 2

n

i
i=

+
=  �(31)

Le produit d’inertie du système de contreventement en pilotis par 
rapport aux axes OZ et OY est donné par la relation suivante :

i i
z1 y1i

i1z1yiZYZY
1 1

I -I
I = I .sin(2 )+I .cos(2 )

2

n n

i i= =

= � (32)

4. MÉTHODE DE RÉSOLUTION 
GRAPHIQUE

L’équation (17) peut se mettre sous la forme :
22i i i i

z1 y1 z1 y1 ii
1z1yZ

I I I I
I .cos(2 ) I .sin(2 )

2 2 i i

+
=  �(33)

L’équation (29) peut se mettre sous la forme :

	
2i i

2 z1 y1 ii
1z1yZY

I -I
I 0 .sin(2 ) I .cos(2 )

2 i i= + � (34)

En additionnant les relations (33) et (34), il vient :
22 iiii

22 1y1z1y1z iii
1z1yZYZ

I I I -I
I I 0 I

2 2
+

+ = + � (35)

Cette dernière équation nous rappelle l’équation d’un cercle 
(Figure 4) de rayon R dont le centre C a pour coordonnées (X0, 
Y0) qui s’écrit sous la forme :

	 [ ] [ ]2 2 2
0 0Y-Y + X-X =R �  (36)

Figure 4. Représentation d’un cercle de centre C (X0, Y0)  
et de rayon R

Par analogie avec l’équation (36), nous déduisons que l’équa-
tion (35) représente l’équation d’un cercle des inerties que 
nous pouvons représenter sur un repère orthogonal (OIZ, OIYZ).
Le centre du cercle des inerties, que nous noterons C, aura pour 
coordonnées 1 1

z1 y1I I
 , 0

2
 +
  
 

, c’est-à-dire qu’il sera centré en 

un point C sur l’axe OIZ et son rayon sera égal à �
2i i

2z1 y1 i
y1z1

I -I
R=  I

2
 

 +     

Etant donné que chaque poteau d’ordre (i) du système de contre-
ventement en pilotis peut être repéré par un angle αi dans le 
repère global du support OYZ (voir Figure 2), ses moments 
inertie peuvent être déduits directement à partir du cercle des 
inerties, d’une manière simple et rapide, en suivant une procé-
dure de construction graphique, que nous développeront dans 
la section (4.2).

4.1.  Détermination de la valeur de αi 
pour laquelle Ii

Z prend des valeurs 
extrêmes (IZ

max et IZ
min)

Nous savons que le moment d’inertie axial Ii
Z (ou Ii

Y) passera 
par un extremum pour toute valeur de αi annulant sa dérivée 
première. Nous pouvons alors écrire :

( )
i

iiiiZ
z1 y1 i y1z1 i YZ

i

dI = - I -I .sin(2 )-2I .cos(2 )=-2 I =0
d

 � (37)

Nous concluons que Ii
Z et Ii

Y prennent des valeurs extrêmes 
lorsque le produit d’inertie Ii

YZ est nul.

	
i i
z1 y1i

i1y1ziZY

I -I
I = .sin(2 )+I .cos(2 )=0

2
� (38) 

Il vient alors : 

	
i
y1z1

i i i
z1 y1

2I
tg(2 )=- 0

I -I
= � (39)

Nous déduisons que Ii
Z prend des valeurs extrêmes pour toute 

valeur de 
i =0+k.

2
, où k est un entier naturel.

Cherchons à déterminer la valeur de Ii
Z, pour la valeur parti-

culière de k=0, donnant 4 =0, correspondant à l’inertie axiale 
du poteau N° 4 (Figure 1). 

4 4 4 4
z1 y1 z1 y1 xam444

Z1z41z1y4Z

I +I I -I
I = + .cos(2 )-I .sin(2 )=I =I

2 2
 � (40)

Cherchons à déterminer la valeur de Ii
Z, pour la valeur particu-

lière de k=1, donnant 1=
2

, correspondant à l’inertie axiale 
du poteau N° 1 (Figure 1). 

1 1 1 1
z1 y1 z1 y1 nim111

Z1y11z1y1Z

I +I I -I
I = + .cos(2 )-I .sin(2 )=I =I

2 2
 � (41)

Nous concluons que le cercle des inerties passera par une valeur 
maximale ( max 4

Z ZI =I ) correspondant au moment d’inertie du 
poteau 4 (Figure 2) ainsi que par une valeur minimale ( min 1

Z ZI =I )  
correspondant au moment d’inertie du poteau 1.

4.2.  Procédure de construction du cercle 
des inerties des poteaux du support 
en pilotis

La représentation géométrique des moments d’inertie, donnée 
dans la Figure 5, par la méthode graphique du cercle de Mohr 
se fait en plusieurs étapes qui peuvent se résumer comme suit :
•	 Tracer les axes orthogonaux OIZ et OIYZ.
•	 Evaluer analytiquement les moments d’inertie axiaux (I1

z1, 
I1

y1) et produit d’inertie I1
y1z1 du poteau 1 correspondant à 

l’angle (α1 =90°). 
•	 Par la relation (41), déduire que 1 1 min

Z y1 ZI =I =I  et 1
YZI =0.
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•	 Localiser le point P1, représentatif du poteau 1, de coordonnées 
(I1

Z, 0) sur l’axe OIZ des abscisses.
•	 Localiser le point C de coordonnées 

1 1
z1 y1I I

 , 0
2

 +
  
 

 

désignant le centre du cercle des inerties sur l’axe OIZ des 
abscisses. 

•	 Tracer le cercle de Mohr de centre C, de rayon�  
21 1

2z1 y1 1
y1z1

I -I
R= + I

2
 

      

 et passant par le point P1. 

•	 A partir de cette étape, nous pouvons déduire les moments 
d’inertie axiaux de n’importe quel poteau du support de 
contreventement noté Pi d’ordre (i) dont l’axe Oz1 forme 
un angle αi avec l’axe OZ. Lorsque l’axe Oz1 du poteau 
d’ordre (i) fait un angle αi avec l’axe OZ dans la réalité, il 
parcourt le double (soit donc 2αi) sur le cercle des inerties.

Figure 5. Construction du cercle des inerties

5. APPLICATION PRATIQUE

Comme application pratique, et pour illustrer la méthode de 
calcul exposée en section 3, nous analysons un château d’eau 
de capacité 1000 m3 posé sur un support en pilotis (Figure 6), 
implanté dans la ville d’El Meneaa (Ghardaia, Algérie) [1]. 
Les caractéristiques géométriques du réservoir sont résumées 
dans le tableau 1.

5.1.  Calcul analytique

Les moments d’inertie axiaux (Ii
z et Ii

y) de chaque poteau rectan-
gulaire Pi d’ordre (i), repéré par son angle αi (ou βi) (Figure 2), 
sont donnés par les relations (1 à 3). Les moments d’inertie 
axiaux (Ii

z1 et Ii
y1) de chaque poteau rectangulaire Pi sont don-

nés par les relations (4 à 5). Enfin les moments d’inertie axiaux 
(Ii

Z, Ii
Y) et le produit d’inertie Ii

YZ de chaque poteau rectangu-
laire Pi sont donnés par les relations (17, 24 et 29). Nous avons 
consigné tous les résultats du calcul analytique effectué pour 
chaque poteau du support en pilotis en fonction de son angle 
αi (ou βi) dans le tableau 2 qui suit.
Nous constatons que le produit d’inertie du système de contre-
ventement IYZ est nul. Nous déduisons que les axes OZ et OY du 
repère global de la structure sont des axes centraux principaux 
du système. Etant donné que les moments d’inertie atteignent 
les valeurs extrêmes (Imax=Imin=IZ = IY), le moment d’inertie axial 
du contreventement par rapport à n’importe quel axe passant 
par le centre O du repère global vaut Imax. Cette orientation judi-
cieuse des poteaux rectangulaires en forme d’étoile (Figure 6) 
procure au support un comportement équivalent à un support 
circulaire en forme d’anneau dont le moment d’inertie est le 
même dans tous les sens.
Un ingénieur civil qui négligerait ou omettrait les inclinaisons 
que font les poteaux du pilotis avec les axes OY et OZ du repère 

Figure 6. Coupe longitudinale du réservoir d’El Meneaa avec la coupe transversale de son support en pilotis [1].

Tableau 1 : Caractéristiques géométriques du réservoir surélevé.

Volume réel du réservoir 1000,00 m3

Nombre de poteaux 12

Dimensions des poteaux 0,70 x 0,90 m²

Rayon de l’axe moyen du support 
en pilotis

5,10 m
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global l’amènerait à considérer que le moment d’inertie du sup-
port IZ, par rapport à l’axe OZ, est la somme des moments d’iner-
tie Ii

z1, qui d’après le tableau 2, vaudrait 197.15 m4 au lieu de 
98.73 m4. Le simple bon sens, incite à dire que la somme des 
moments d’inertie

12
i 4
z1

i=1
I 197.15 m=∑ , en soit n’a aucun sens phy-

sique. Cette confusion fortuite mais bien regrettable entre ces 
deux résultats qui présentent une grande analogie dans l’esprit 
des ingénieurs, peu expérimentés et moins aguerris aux calculs 
des rigidités (ou/et des moments d’inertie), nous conduira à 
surestimer la rigidité flexionnelle (EI) du support en pilotis. 
Cette surestimation de la rigidité du support aura pour consé-
quence de destiner l’ouvrage en question à des sollicitations sis-
miques d’une plus grande intensité pour les quelles il ne pourra 
pas résister dans la réalité étant donné que sa vraie rigidité est 
en-deçà de la rigidité supposée par l’ingénieur calculateur.

5.2.  Construction graphique

La construction du cercle des inerties des poteaux du support en 
pilotis de notre application pratique est donnée dans la Figure 7, 
en suivant les étapes déjà énumérées en section (4.2).
•	 Les moments d’inertie axiaux ainsi que le produit d’inertie 

du poteau 1 correspondant à l’angle (α1 =90°), obtenus 
analytiquement sont : I1

z1=16.43 m4, I1
y1=0.03 m4 et I1

y1z1=0.
•	 Nous localisons le point P1, représentatif du poteau 1, de 

coordonnées (I1
y1=0.03 m4 ; I1

y1z1=0 m4) sur l’axe OIZ des 
abscisses.

•	 Nous localisons le point C de coordonnées (16.46 m4, 0), 
désignant le centre du cercle des inerties sur l’axe OIZ des 
abscisses. 

•	 Nous traçons le cercle de Mohr de centre C, de rayon 
R=8.20 m4 et passant par le point P1. 
L’axe Oz1 du poteau 2 forme un angle de 30° par rapport à 
celui du poteau 1 dans la réalité (Figure 6). Le point P2 devra 
parcourir le double (soit donc 60°) sur le cercle des iner-
ties par rapport au point P1. L’axe Oz1 du poteau 3 forme un 
angle de 60° par rapport à celui du poteau 1 dans la réalité 

(Figure 6). Le point P2 devra parcourir le double (soit donc 
120°) sur le cercle des inerties par rapport au point P1. Avec 
la même démarche, nous pouvons placer sur le cercle des 
inerties les points représentatifs (P4, P5 … et P12) correspon-
dant aux poteaux (4, 5 … et 12).
Il est aisé de déduire que deux poteaux, dont les axes Oz1 
forment un angle droit dans la réalité, sont diamétralement 
opposés sur le cercle de Mohr tels que les points P1 et P4 ou 
les points P2 et P5 ou encore les points P3 et P6.
Deux poteaux, dont les axes Oz1 forment un angle plat 
(opposés) dans la réalité, sont confondus sur le cercle de 
Mohr tels que les points (P1-P7, P2-P8, P3-P9, P4-P10, P5-P11 
et enfin P6-P12).

Nous nous rendons compte qu’à partir du seul poteau 1, nous 
pouvons aisément déduire tous les moments d’inertie (et pro-
duit d’inertie) des poteaux du support d’un réservoir surélevé 
par de simples rotations sur le cercle des inerties en fonction 
des inclinaisons des poteaux entre eux dans la réalité, en exploi-
tant leur symétrie.

Figure 7. Construction du cercle des inerties des poteaux  
du support en pilotis du réservoir d’El Meneaa

Tableau 2 : Résultats récapitulatifs du calcul analytique des moments d’inertie.

N° du
poteau

Angle
β(°)

Angle
α (°)

Ii
y

[m4]
Ii

z
[m4]

Ii
zy

[m4]
Ii

y1
[m4]

Ii
z1

[m4]
Ii

z1y1
[m4]

Ii
Y

[m4]
Ii

Z
[m4]

Ii
YZ

[m4]

1 00 90 0,03 0,04 0,00 0,03 16,43 0,00 16,43 0,03 - 0,00

2 30 60 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 - 7,10

3 60 30 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 - 7,10

4 90 00 0,03 0,04 0,00 0,03 16,43 0,00 0,03 16,43 0,00

5 120 - 30 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 7,10

6 150 - 60 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 7,10

7 180 - 90 0,03 0,04 0,00 0,03 16,43 0,00 16,43 0,03 0,00

8 210 - 120 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 - 7,10

9 240 - 150 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 - 7,10

10 270 - 180 0,03 0,04 0,00 0,03 16,43 0,00 0,03 16,43 0,00

11 300 - 210 0,03 0,04 0,00 0,03 16,43 0,00 4,13 12,33 7,10

12 330 - 240 0,03 0,04 0,00 0,03 16,43 0,00 12,33 4,13 7,10

Somme 197,15 98,73 98,73 0,00
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6. CONCLUSION

Nous venons d’illustrer à travers cette contribution que le calcul 
des moments d’inertie (et produit d’inertie) des poteaux du sup-
port d’un réservoir sur pilotis peut être résolu analytiquement ou 
graphiquement. Avec un exemple pratique, nous sommes arri-
vés à mettre en évidence que l’approche analytique proposée 
présente des équations pas trop complexes et donne lieu à des 
résolutions simples. La démarche de résolution proposée n’est 
pas complexe d’utilisation, et s’accommode aisément d’une pro-
grammation avec Matlab ou simplement sur un classeur Excel.
Quant aux lecteurs amateurs de solutions graphiques, ils auront 
trouvé une procédure élégante de la déduction des moments 
d’inertie de chaque poteau par rapport à l’axe OZ, à partir du 
cercle de Mohr par la seule connaissance des moments d’inertie 
axiaux (I1

z1 et I1
y1) du poteau P1. Cette construction graphique 

du cercle des inerties résulte de l’adaptation de la méthode de 
l’évaluation des caractéristiques des sections planes.
A travers l’exemple pratique que nous avons traité, nous avons 
pu démontré que l’omission de la prise en compte de la rotation 
des axes principaux de chaque poteau constituant le pilotis par 
rapport à l’axe horizontal OZ du repère global de la structure 
peut altérer d’une manière significative la précision des calculs 
qui peuvent en découler, en terme d’évaluation de la force sis-
mique et de réponse sismique de la structure. Il va sans dire 
que les conclusions et interprétations qui seront déduites de ces 
résultats seront très éloignées de la réalité.
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