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1. INTRODUCTION

Les bâtiments sont des structures susceptibles d’être
endommagées lorsque leur terrain d’assise subit des mou-
vements (retrait-gonflement, affaissement minier, influence
d’une excavation…). Les méthodes mises en œuvre pour
étudier le comportement des ouvrages et leur vulnérabilité
en zone de mouvement de terrains sont de quatre natures :
empiriques, analytiques, numériques et expérimentales.
Les méthodes analytiques sont basées sur une modélisation
des structures par une poutre ou un ensemble de poutres, au
sens de la Résistance des Matériaux. Ces méthodes, ini-
tiées par Burland et Wroth (1974) ont fait l’objet d’un
grand nombre de développements (Boscardin et Cording
1989, Boone 1996 et 2001). Le principe général consiste à
supposer que le bâti subira une déflexion ∆ assimilable à la
flèche d’une poutre en flexion simple et d’obtenir une rela-

tion entre l’intensité des déformations maximales dans la
structure et la flèche maximale ∆. L’utilisation de valeurs
seuils sur la déformation maximale dans la structure per-
met alors d’associer un niveau de dommage à chaque
valeur de ∆. Cette approche permet de justifier analytique-
ment des valeurs seuils de ∆ empiriques. Néanmoins, son
application dans un contexte de prévision des dommages
provoqués par un mouvement de terrain d’intensité donnée
soulève une grande difficulté. Il convient en effet d’évaluer
d’abord la flèche maximale du bâti ∆ en fonction du mou-
vement en champ libre ∆0.Les différentes approches proposées mettent en évidence la
nécessité de distinguer deux mouvements du terrain :
– Le mouvement en champ libre Δ0 qui caractérise le mou-

vement subi par le terrain en l’absence de toute interac-
tion avec un ouvrage, elle correspond à la déflexion
maximale que le bâti est susceptible de subir sous l’hy-
pothèse que la totalité du mouvement du terrain lui est
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transmise. Il existe une relation géométrique entre la
courbure du terrain, la déflexion et la longueur du bâti-
ment (Burland et Wroth 1974, Kratzsch 1983) :

Δ0 = L2/8R Équation 1
– La flèche maximale au bâti Δ (assez difficile à trouver)

qui peut être significativement inférieure au déplacement
en champ libre compte tenu des phénomènes d’interac-
tion sol-structure, en particulier pour des structures
rigides. 

Deck et singh (2010) ont utilisé un modèle analytique basé
sur le modèle de Winkler pour calculer le taux de trans-
mission de la déflexion Δ/Δ0. Les résultats obtenus peu-
vent se représenter sous la forme d’une courbe reliant le
taux de transmission de la déflexion en fonction de la rigi-
dité relative en flexion (Figure 1 et Equ. 2). Ils ont comparé
leurs résultats analytiques à des résultats numériques, la
comparaison montrait des différences qui pouvaient s’ex-
pliquer par l’utilisation d’un modèle trop simple du terrain
et de la structure.

Équation 2

avec Kw le module de réaction du sol [pa/m]), EI la rigidité
à la flexion de la poutre, B la largeur du bâti, L la longueur
du bâtiment. Goh et Maire (2011) ont défini une mesure
différente de la rigidité relative (Equ.3) qui sera utilisée
dans cet article pour présenter et comparer les résultats
obtenus selon le modèle de sol utilisé, avec Et le module
de Young du sol. 

Équation 3

Dans les paragraphes suivants, on développe un modèle
analytique afin d’améliorer l’évaluation du taux de trans-
mission de la déflexion en tenant compte de l’influence du
cisaillement dans le terrain et dans le bâti. On modélise
alors le comportement du sol avec le moèle de pasternak
en remplacement du modèle de Winkler.

2. LE MODÈLE ANALYTIQUE
DÉVELOPPÉ
Le modèle analytique initialement développé par Deck et
singh (2010) consiste à rechercher la position d’équilibre
d’une poutre élastique de longueur  L, hauteur H, largeur B
et de module de Young E, reposant sur un terrain initiale-
ment courbe décrit par une équation v(x) et modélisé par
des éléments de Winkler. La poutre est sollicitée par une
charge verticale uniforme q et la distribution p(x) corres-
pond à la réaction du sol (Équation 4), w(x) est la déformée
du terrain. L’utilisation du modèle de Winkler présente des
inconvénients comme le choix du coefficient de raideur
Kw, et les discontinuités de déplacement du terrain que ce
modèle provoque.
p(x) = Kw.B.w(x) Équation 4
Le modèle présenté ici a été développé en utilisant le
modèle de pasternak qui consiste à introduire un certain
degré d’interaction entre les ressorts adjacents du massif de
Winkler. Cette interaction est assurée par l’intermédiaire
d’un coefficient de rigidité tangentielle Gp du sol en plus
de la rigidité normal Kp (équation 5).
p(x) = Kp.B.w(x) – Gp.B.w” (x) Équation 5
avec p(x) [N/m] la réaction du sol s’appliquant sur une lar-
geur B de la poutre, Gp le module de cisaillement dans le
plan horizontal [N/m], Kp le module de réaction du
sol[pa/m] et w(x) la déformée du terrain.
Lorsque Gp est nul, le modèle de pasternak est identique
au modèle de Winkler. On utilisera alors la notation Kwpour le module de réaction du sol [pa/m]. Il est important
de souligner ici qu’un même sol modélisé par un modèle
de Winkler ou de pasternak aura des modules Kp et Kwdifférents, dés lors que Gp est non nul (cf. section sui-
vante).
Deux différences essentielles sont observées entre le
modèle de Winkler et celui de pasternak sollicités par une
distribution de charge uniforme. un tassement uniforme du
terrain est observé sous le bâti et aucun déplacement en
dehors de la zone de chargement dans le cas de Winkler,
alors qu’une continuité de déplacement du terrain sous et
hors le bâti est bien notée dans le cas du modèle de
pasternak.
Le comportement du bâtiment a été initialement modélisé
par une poutre de Euler-Bernoulli (équation 6) qui ne
considère pas l’influence du cisaillement du bâti sur la
déformée. 

Équation 6

avec : y’’(x) la déformée du bâti, M(x) le moment fléchis-
sant, EI la rigidité à la flexion. 
La condition de non interpénétration du sol et du bâti
impose une relation entre la déformée du bâti y(x), la
déformée du sol w(x), la déformée initiale du terrain v(x)
et le déplacement de corps rigide du bâti d (Equ.7 et
Figure 2).
y(x) = w(x) – d + v(x) Équation 7
v(x) correspond à la forme de courbure initiale du terrain.
un modèle parabolique est choisi pour introduire le tasse-
ment différentiel du terrain en champs libre Δ0 (Equ.8).
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Figure 1 : Taux de transmission maximal de la déflection
en fonction du coefficient de rigidité relative en flexion

(Deck et Singh 2010)



Équation 8

Le mouvement de corps rigide d est donc égal à w(L/2) et
la flèche maximale du bâti Δ est égal a y(0). L’association
du modèle de pasternak (Equ 5), de l’équation différen-
tielle du bâti (Equ 6) et de la condition de non interpéné-
tration (Equ. 7) permet d’aboutir à l’équation différentielle
caractéristique du système (Equ.9).
EI.w(4) (x) – (Gp.B)w(2) (x) +.Kp.B.w(x) = q Équation 9
L’équation différentielle qui caractérise le mouvement du
terrain en dehors du bâti (x > L/2) est l’équation 10.
Gp.B.w(2) (x) + .Kp.B.w(x) = 0 Équation 10
La solution analytique de 9 et 10 fait apparaître 4
constantes d’intégrations qui nécessitent pour être détermi-
nées de définir les 4 conditions aux limites suivantes : 
– une déflexion nulle de la poutre à ses extrémités : y(L/2)

= 0.
– un moment fléchissant nul aux extrémités de la poutre

y’’(L/2) = 0.
– La continuité du déplacement du terrain  sous et hors la

poutre 
w1(L/2) = w2(L/2). 
– un effort tranchant aux extrémités de la poutre tel que :
F=Gp. Δw’(L/2) Équation 11

3. DÉVELOPPEMENT
D’UNE MÉTHODOLOGIE
POUR LE CHOIX DES PARAMÈTRES
DE SOL (PARAMÈTRES DE WINKLER
ET PASTERNAK)

Le modèle analytique présenté nécessite d’utiliser des
paramètres du terrain pertinents. Néanmoins, il n’existe
pas de relation théorique exacte entre les valeurs des para-

mètres de pasternak Kp, Gp et les propriétés élastiques du
terrain (module de Young et coefficient de poisson). La
méthodologie de choix des paramètres est basée sur une
comparaison des résultats de tassements obtenus par les
modèles analytiques de Winkler ou pasternak et les solu-
tions théoriques issues de l’étude du comportement des
milieux semi-infinis (modèles de Boussinesq et Flamant).
Boussinesq (1885) a calculé le déplacement vertical généré
par une force ponctuelle p appliquée en surface d’un milieu
élastique semi-infini défini par son module de Young E et
son coefficient de poisson ν (équation 12)

Équation 12

pour une couche de terrain compressible d’une épaisseur
finie h, le déplacement du terrain en surface peut être
approximé par l’équation 13 :
uz1(x,y) = uz(x,y,0) – uz (x,y,h) Équation 13 
Flamant (1892) utilise la relation de Boussinesq pour cal-
culer le tassement induit par une charge surfacique de lar-
geur 2b selon x et infinie selon la direction y. Ce
déplacement uz2 est obtenu par intégration de la solution de
Boussinesq (Equ. 14) 

Équation 14

La méthodologie développée pour définir les valeurs
numériques des paramètres du terrain (Kp et Gp) est basée
sur l’ajustement entre les résultats théoriques (Equ.14) et la
solution obtenue par le modèle de pasternak pour une
charge infinie de largeur 2b appliquée sur le terrain (obte-
nue par résolution de l’équation 5 pour p(x) = p constant).
Ces deux équations correspondant respectivement au tas-
sement prédit par le modèle de Flamant ou le modèle de
pasternak, sont différentes. Il est possible de calculer les
paramètres Kp et Gp en imposant l’égalité de ces deux équa-
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Figure 2 : Différents mouvements du terrain et du bâti pour étudier l’influence d’une courbure initiale du terrain v(x)
sur la déformée finale du bâti y(x).



tions pour des abscisses particulières. On impose par
exemple que les déplacements obtenus à partir de ces deux
modèles soient les mêmes aux abscisses x = 0 (centre de la
charge) et x = b (extrémité de la zone chargée).
On obtient donc deux équations à deux inconnus (Kp et Gp).Les valeurs de Kp et Gp sont indépendantes de l’intensité de
la charge. Les solutions sont exprimées par des abaques
(Figure 3), pour un module de Young du terrain égal à
1 Mpa. pour d’autres valeurs du module de Young du ter-
rain, il convient de multiplier les valeurs de Kp et Gp four-
nies dans les abaques, par le module de Young du terrain
(Equ 15, Equ 16).
Kp(Et) = Kp.Et Équation 15
Gp(Et) = Gp.Et Équation 16
On utilise la même méthode pour trouver le module de
réaction du sol Kw pour le modèle de Winkler. Dans ce cas,
on cherche la valeur de Kw permettant d’obtenir un tasse-
ment moyen sous la charge identique entre le modèle de
Flamant et le modèle de Winkler.
Kw(Et) = KwEt Équation 17

4. EXPLOITATION DU MODÈLE
ANALYTIQUE : COMPARAISON
ENTRE LE MODÈLE DE WINKLER
ET LE MODÈLE DE PASTERNAK

après avoir défini de façon satisfaisante les 2 paramètres
de pasternak et la valeur du module de réaction de sol de
Winkler afin que ces valeurs soient représentatives d’un

même sol, on utilise ces paramètres dans nos calculs pour
trouver la flèche maximale d’un bâti en zone de mouve-
ment de terrain.
On a choisi des valeurs différentes de la longueur de bâti,
de la rigidité à la flexion EI et du module de Young du ter-
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Figure 3: (a,b) Abaques permettant de trouver les modules de réaction du sol Kp (a), Gp (b) du modèle de Pasternak en fonction
de la demi-largeur de la charge b et de l’épaisseur du terrain h (Et = 1 MPa, υ = 0.3). Pour d’autres valeurs du module de Young

du terrain, il convient de multiplier les valeurs fournies par les abaques par le module de Young de terrain

Figure 4 : Abaque permettant de trouver le module
de réaction du sol Kw du modèle de Winkler en fonction de
la demi-largeur de la charge b et de l’épaisseur du terrain

h (Et = 1 MPa, υ = 0.3). ). Pour d’autres valeurs du module de
Young du terrain, il convient de multiplier les valeurs fournies

par les abaques par le module de Young de terrain.



rain afin de modéliser une large gamme de situations diffé-
rentes. Les résultats obtenus sont présentés sur la figure 4.
On observe une différence significative entre les résultats de
Winkler et ceux de pasternak. L’influence de la déformée
associée au cisaillement dans le sol est donc importante, elle
doit être prise en compte pour calculer la flèche maximale
finale d’un bâti dans une zone de mouvement de terrain. Les
résultats obtenus avec le modèle de pasternak montrent un
taux de transmission de la déflexion plus important qu’avec
le modèle de Winkler. Ceci s’explique par le fait que le tas-
sement v(x) du terrain au centre du bâti s’accentue au fur et
à mesure du tassement du terrain aux extrémités du bâti
(influence des déformations de cisaillement).
Les valeurs de Δ/Δ0 se rapprochent de 1 pour des faibles
valeurs de ρ*, ce qui correspond au cas d’un bâti très
souple sur un sol rigide. Inversement, la déflexion trans-
mise devient quasiment nulle pour une valeur élevée de la
rigidité relative, c’est à dire pour un bâti rigide en compa-
raison avec le terrain.
Les calculs ont été menés en vérifiant que le contact sol-
bâti était maintenu sur toute la longueur de la structure (il
n’y a pas de vide généré sous le bâti). Dans certaines situa-
tions, associées à un bâti très rigide et/ou une valeur initiale
de Δ0 importante, un vide pourrait en effet se créer sous le
bâti. Les calculs présentés sur la Figure 5 constituent ainsi
une borne supérieure de la valeur de Δ/Δ0 puisque l’occur-
rence d’un décollement irait dans le sens d’une réduction
de Δ et donc de Δ/Δ0.

5. CONCLUSION

un modèle analytique a été développé afin de tenir compte
de l’influence des déformations associées au cisaillement
dans le sol sur le calcul du taux de transmission de la
déflexion d’un ouvrage impacté par des mouvements de
terrains. Cela est rendu possible grâce au modèle de
pasternak en remplacement du modèle de Winkler dans le
modèle analytique.

pour les deux modèles de sol, une méthodologie a été mise
en œuvre afin de justifier les valeurs des paramètres en
fonction des propriétés élastiques du sol.
La comparaison des résultats obtenus entre le modèle de
Winkler et celui de pasternak, tout en modélisant un même
sol, montre des résultats significativement différents qui
justifient la nécessité de tenir compte du cisaillement dans
le terrain pour une évaluation précise du taux de déflexion
d’un bâti. Des comparaisons avec des résultats de modéli-
sations numériques (non présentées ici) conduisent à pen-
ser que les deux solutions de Winkler et pasternak
pourraient être utilisée pour estimer un encadrement de la
solution d’équilibre réelle.
Les perspectives envisagées sont les suivantes :
• Modéliser un comportement élasto-plastique du terrain.

Winkler et pasternak ont supposé que le modèle de ter-
rain est élastique, alors que le comportement réel est
élasto-plastique.

• Considérer un modèle de bâti adapté aux faibles élance-
ments (rapport L/H du bâti i inférieur à 2 environ) pour
lesquels la théorie des poutres ne peut pas s’appliquer.

• Envisager la validation des résultats à partir de modélisa-
tions numériques et d’essais physiques.
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Figure 5: Taux de transmission de la déflexion (axe vertical)
pour les deux modèles analytiques de Pasternak et Winkler

en fonction de ρ* = EI/(8.Et.L3).


