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1. INTRODUCTION

Les batiments sont des structures susceptibles d’étre
endommagées lorsque leur terrain d’assise subit des mou-
vements (retrait-gonflement, affaissement minier, influence
d’une excavation...). Les méthodes mises en ceuvre pour
étudier le comportement des ouvrages et leur vulnérabilité
en zone de mouvement de terrains sont de quatre natures :
empiriques, analytiques, numériques et expérimentales.

Les méthodes analytiques sont basées sur une modélisation
des structures par une poutre ou un ensemble de poutres, au
sens de la Résistance des Matériaux. Ces méthodes, ini-
tiées par Burland et Wroth (1974) ont fait I’objet d’un
grand nombre de développements (Boscardin et Cording
1989, Boone 1996 et 2001). Le principe général consiste a
supposer que le bati subira une déflexion A assimilable a la
fleche d’une poutre en flexion simple et d’obtenir une rela-
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tion entre I'intensité des déformations maximales dans la
structure et la fleche maximale A. L’utilisation de valeurs
seuils sur la déformation maximale dans la structure per-
met alors d’associer un niveau de dommage a chaque
valeur de A. Cette approche permet de justifier analytique-
ment des valeurs seuils de A empiriques. Néanmoins, son
application dans un contexte de prévision des dommages
provoqués par un mouvement de terrain d’intensité donnée
souleve une grande difficulté. Il convient en effet d’évaluer
d’abord la fleche maximale du bati A en fonction du mou-

vement en champ libre A .

Les différentes approches proposées mettent en évidence la

nécessité de distinguer deux mouvements du terrain :

— Le mouvement en champ libre A qui caractérise le mou-
vement subi par le terrain en 1’absence de toute interac-
tion avec un ouvrage, elle correspond a la déflexion
maximale que le bati est susceptible de subir sous 1’hy-
pothése que la totalité du mouvement du terrain lui est
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transmise. Il existe une relation géométrique entre la
courbure du terrain, la déflexion et la longueur du bati-
ment (Burland et Wroth 1974, Kratzsch 1983) :
A, =L*/8R Equation 1
— La fleche maximale au bati A (assez difficile a trouver)
qui peut &tre significativement inférieure au déplacement
en champ libre compte tenu des phénomenes d’interac-
tion sol-structure, en particulier pour des structures
rigides.
Deck et Singh (2010) ont utilisé un modele analytique basé
sur le modele de Winkler pour calculer le taux de trans-
mission de la déflexion A/A, . Les résultats obtenus peu-
vent se représenter sous la forme d’une courbe reliant le
taux de transmission de la déflexion en fonction de la rigi-
dité relative en flexion (Figure 1 et Equ. 2). Ils ont comparé
leurs résultats analytiques a des résultats numériques, la
comparaison montrait des différences qui pouvaient s’ex-
pliquer par I’utilisation d’un modele trop simple du terrain
et de la structure.

0% = 2 Equation 2

K, .B.L*

avec K le module de réaction du sol [Pa/m]), EI la rigidité
a la flexion de la poutre, B la largeur du béti, L la longueur
du batiment. Goh et Maire (2011) ont défini une mesure
différente de la rigidité relative (Equ.3) qui sera utilisée
dans cet article pour présenter et comparer les résultats
obtenus selon le modele de sol utilisé, Avec Et le module
de Young du sol.
¥ = El

= Equation 3
E, B.I’

Dans les paragraphes suivants, on développe un modele
analytique afin d’améliorer I’évaluation du taux de trans-
mission de la déflexion en tenant compte de I’influence du
cisaillement dans le terrain et dans le bati. On modélise
alors le comportement du sol avec le moele de Pasternak
en remplacement du modele de Winkler.
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Figure 1 : Taux de transmission maximal de la déflection

en fonction du coefficient de rigidité relative en flexion
(Deck et Singh 2010)
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2. LE MOD?LE ANALYTIQUE
DEVELOPPE

Le modele analytique initialement développé par Deck et
Singh (2010) consiste a rechercher la position d’équilibre
d’une poutre élastique de longueur L, hauteur H, largeur B
et de module de Young E, reposant sur un terrain initiale-
ment courbe décrit par une équation v(x) et modélisé par
des éléments de Winkler. La poutre est sollicitée par une
charge verticale uniforme q et la distribution p(x) corres-
pond a la réaction du sol (Equation 4), w(x) est la déformée
du terrain. L’utilisation du modele de Winkler présente des
inconvénients comme le choix du coefficient de raideur
K, et les discontinuités de déplacement du terrain que ce
modgle provoque.

p(x) =K B.w(x) Equation 4
Le modele présenté ici a été développé en utilisant le
modele de Pasternak qui consiste a introduire un certain
degré d’interaction entre les ressorts adjacents du massif de
Winkler. Cette interaction est assurée par I'intermédiaire
d’un coefficient de rigidité tangentielle Gp du sol en plus
de la rigidité normal K (équation 5). ;

p(x) = Kp.B.w(x) - Gp.B.w” (x) Equation 5
avec p(x) [N/m] la réaction du sol s’appliquant sur une lar-
geur B de la poutre, G, le module de cisaillement dans le
plan horizontal [N/m], Kp le module de réaction du
sol[Pa/m] et w(x) la déformée du terrain.

Lorsque G est nul, le modele de Pasternak est identique
au modele de Winkler. On utilisera alors la notation K
pour le module de réaction du sol [Pa/m]. Il est important
de souligner ici qu’un méme sol modélisé par un modele
de Winkler ou de Pasternak aura des modules K et K|
différents, dés lors que G est non nul (cf. section sui-
vante).

Deux différences essentielles sont observées entre le
modele de Winkler et celui de Pasternak sollicités par une
distribution de charge uniforme. Un tassement uniforme du
terrain est observé sous le bati et aucun déplacement en
dehors de la zone de chargement dans le cas de Winkler,
alors qu’une continuité de déplacement du terrain sous et
hors le bati est bien notée dans le cas du modele de
Pasternak.

Le comportement du batiment a été initialement modélisé
par une poutre de Euler-Bernoulli (équation 6) qui ne
consideére pas l'influence du cisaillement du bati sur la
déformée.

yi(e) = M

Equation 6
EI

avec : y”(x) la déformée du bati, M(x) le moment fléchis-
sant, EI la rigidité a la flexion.

La condition de non interpénétration du sol et du bati
impose une relation entre la déformée du bati y(x), la
déformée du sol w(x), la déformée initiale du terrain v(x)
et le déplacement de corps rigide du bati d (Equ.7 et
Figure 2).

y(x) = w(x) —d + v(x) Equation 7
v(x) correspond a la forme de courbure initiale du terrain.
Un modele parabolique est choisi pour introduire le tasse-
ment différentiel du terrain en champs libre A (Equ.8).
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4.2
v(x)=Ay(1- )

) Equation 8

Le mouvement de corps rigide d est donc égal a w(L/2) et
la fleche maximale du bati A est égal a y(0). L’association
du modele de Pasternak (Equ 5), de 1’équation différen-
tielle du bati (Equ 6) et de la condition de non interpéné-
tration (Equ. 7) permet d’aboutir a I’équation différentielle
caractéristique du systeme (Equ.9).
EIw® (x) — (Gp.B)w?® (x) +.Kp.B.w(x) =q Equation 9
L’équation différentielle qui caractérise le mouvement du
terrain en dehors du bati (x > L/2) est I’équation 10.
Gp.Bw? (x) + .Kp.Bw(x) =0 Equation 10
La solution analytique de 9 et 10 fait apparaitre 4
constantes d’intégrations qui nécessitent pour étre détermi-
nées de définir les 4 conditions aux limites suivantes :
— Une déflexion nulle de la poutre a ses extrémités : y(L/2)
=0.
— Un moment fléchissant nul aux extrémités de la poutre

y’(L/2)=0.
— La continuité du déplacement du terrain sous et hors la
poutre

wl(L/2) = w2(L/2).
— Un effort tranchant aux extrémités de la poutre tel que :
F=G . Aw’(L/2) Equation 11

3. DEVELOPPEMENT

D’UNE METHODOLOGIE

POUR LE CHOIX DES PARAMETRES
DE SOL (PARAMETRES DE WINKLER
ET PASTERNAK)

Le modele analytique présenté nécessite d’utiliser des
parametres du terrain pertinents. Néanmoins, il n’existe
pas de relation théorique exacte entre les valeurs des para-

metres de Pasternak K , G et les propriétés €lastiques du
terrain (module de Young et coefficient de Poisson). La
méthodologie de choix des parametres est basée sur une
comparaison des résultats de tassements obtenus par les
modeles analytiques de Winkler ou Pasternak et les solu-
tions théoriques issues de 1’étude du comportement des
milieux semi-infinis (modeles de Boussinesq et Flamant).
Boussinesq (1885) a calculé le déplacement vertical généré
par une force ponctuelle p appliquée en surface d’un milieu
élastique semi-infini défini par son module de Young E et
son coefficient de poisson v (équation 12)

z(r,y,2) = —— P
[2, .2 2
BNy Xz Equation 12
22
QU-V)+—5——5—)
Y +xT+z

Pour une couche de terrain compressible d’une épaisseur
finie h, le déplacement du terrain en surface peut étre
approximé par I’équation 13 :

uz (x,y) = uz(x,y,0) — uz (x,y,h) Equation 13
Flamant (1892) utilise la relation de Boussinesq pour cal-
culer le tassement induit par une charge surfacique de lar-
geur 2b selon x et infinie selon la direction y. Ce
déplacement uz, est obtenu par intégration de la solution de
Boussinesq (Equ. 14)

X+b 400
uzy(x,h) = [ [ uzy(u,v).dv..du

x—b—o0

Equation 14

La méthodologie développée pour définir les valeurs
numériques des parametres du terrain (K et G) est basée
sur I’ajustement entre les résultats théoriques (Equ.14) et la
solution obtenue par le modele de Pasternak pour une
charge infinie de largeur 2b appliquée sur le terrain (obte-
nue par résolution de 1I’équation 5 pour p(x) = p constant).
Ces deux équations correspondant respectivement au tas-
sement prédit par le modele de Flamant ou le modele de
Pasternak, sont différentes. Il est possible de calculer les
parametres K et G en imposant I’égalité de ces deux équa-
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Figure 2 : Différents mouvements du terrain et du béti pour étudier I'influence d’une courbure initiale du terrain v(x)
sur la déformée finale du béti y(x).
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tions pour des abscisses particulieres. On impose par
exemple que les déplacements obtenus a partir de ces deux
modeles soient les mémes aux abscisses x = 0 (centre de la
charge) et x = b (extrémité de la zone chargée).

On obtient donc deux équations a deux inconnus (K et G ).
Les valeurs de K et G sont indépendantes de I’intensité de
la charge. Les solutions sont exprimées par des abaques
(Figure 3), pour un module de Young du terrain égal a
1 MPa. Pour d’autres valeurs du module de Young du ter-
rain, il convient de multiplier les valeurs de K et G, four-
nies dans les abaques, par le module de Young du terrain
(Equ 15, Equ 16).

K(E)=K E, Equation 15
G(E)=G E Equation 16
On utilise la méme méthode pour trouver le module de
réaction du sol K pour le modele de Winkler. Dans ce cas,
on cherche la valeur de K permettant d’obtenir un tasse-
ment moyen sous la charge identique entre le modele de
Flamant et le modele de Winkler.

K(E)=KE, Equation 17

4. EXPLOITATION DU MODELE
ANALYTIQUE : COMPARAISON
ENTRE LE MODELE DE WINKLER
ET LE MODELE DE PASTERNAK

Apres avoir défini de facon satisfaisante les 2 parametres
de Pasternak et la valeur du module de réaction de sol de
Winkler afin que ces valeurs soient représentatives d’un
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Figure 4 : Abaque permettant de trouver le module
de réaction du sol Kw du modéle de Winkler en fonction de
la demi-largeur de la charge b et de I’épaisseur du terrain
h (Et = 1 MPa, v = 0.3). ). Pour d’autres valeurs du module de
Young du terrain, il convient de multiplier les valeurs fournies
par les abaques par le module de Young de terrain.

méme sol, on utilise ces parametres dans nos calculs pour
trouver la fleche maximale d’un bati en zone de mouve-
ment de terrain.

On a choisi des valeurs différentes de la longueur de bati,
de la rigidité a la flexion EI et du module de Young du ter-
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Figure 3: (a,b) Abaques permettant de trouver les modules de réaction du sol Kp (a), Gp (b) du modéle de Pasternak en fonction
de la demi-largeur de la charge b et de I’épaisseur du terrain h (Et = 1 MPa, v = 0.3). Pour d’autres valeurs du module de Young
du terrain, il convient de multiplier les valeurs fournies par les abaques par le module de Young de terrain
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rain afin de modéliser une large gamme de situations diffé-
rentes. Les résultats obtenus sont présentés sur la figure 4.
On observe une différence significative entre les résultats de
Winkler et ceux de Pasternak. L’influence de la déformée
associée au cisaillement dans le sol est donc importante, elle
doit étre prise en compte pour calculer la fleche maximale
finale d’un bati dans une zone de mouvement de terrain. Les
résultats obtenus avec le modele de Pasternak montrent un
taux de transmission de la déflexion plus important qu’avec
le modele de Winkler. Ceci s’explique par le fait que le tas-
sement v(x) du terrain au centre du bati s’accentue au fur et
a mesure du tassement du terrain aux extrémités du bati
(influence des déformations de cisaillement).

Les valeurs de A/A se rapprochent de 1 pour des faibles
valeurs de o*, ce qui correspond au cas d’un bati tres
souple sur un sol rigide. Inversement, la déflexion trans-
mise devient quasiment nulle pour une valeur élevée de la
rigidité relative, c’est a dire pour un bati rigide en compa-
raison avec le terrain.

Les calculs ont été menés en vérifiant que le contact sol-
bati était maintenu sur toute la longueur de la structure (il
n’y a pas de vide généré sous le bati). Dans certaines situa-
tions, associées a un bati trés rigide et/ou une valeur initiale
de A, importante, un vide pourrait en effet se créer sous le
bati. Les calculs présentés sur la Figure 5 constituent ainsi
une borne supérieure de la valeur de A/A puisque 1’occur-
rence d’un décollement irait dans le sens d’une réduction
de A et donc de A/A .
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Figure 5: Taux de transmission de la déflexion (axe vertical)
pour les deux modéles analytiques de Pasternak et Winkler
en fonction de p* = El/(8.E.L*).

5. CONCLUSION

Un modele analytique a été développé afin de tenir compte
de I'influence des déformations associées au cisaillement
dans le sol sur le calcul du taux de transmission de la
déflexion d’un ouvrage impacté par des mouvements de
terrains. Cela est rendu possible grice au modele de
Pasternak en remplacement du modele de Winkler dans le
modele analytique.
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Pour les deux modeles de sol, une méthodologie a été mise
en ceuvre afin de justifier les valeurs des parameétres en
fonction des propriétés élastiques du sol.
La comparaison des résultats obtenus entre le modele de
Winkler et celui de Pasternak, tout en modélisant un méme
sol, montre des résultats significativement différents qui
justifient la nécessité de tenir compte du cisaillement dans
le terrain pour une évaluation précise du taux de déflexion
d’un bati. Des comparaisons avec des résultats de modéli-
sations numériques (non présentées ici) conduisent a pen-
ser que les deux solutions de Winkler et Pasternak
pourraient étre utilisée pour estimer un encadrement de la
solution d’équilibre réelle.

Les perspectives envisagées sont les suivantes :

* Modéliser un comportement élasto-plastique du terrain.
Winkler et Pasternak ont supposé que le modele de ter-
rain est élastique, alors que le comportement réel est
élasto-plastique.

* Considérer un modele de bati adapté aux faibles élance-
ments (rapport L/H du bati i inférieur a 2 environ) pour
lesquels la théorie des poutres ne peut pas s’appliquer.

* Envisager la validation des résultats a partir de modélisa-
tions numériques et d’essais physiques.
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